相关文章
Related Articles详细介绍
有关电缆电压试验中的“假击穿"现象探讨
在电缆电压试验中,经常会由于“假击穿"现象而造成误判,进而影响工 作的正常进行。为了深入了解,本文主要针对有关电缆电压试验中的“假击穿"现 象进行了简单分析和探讨。
高压耐压试验是保证电缆电压产品质量的一个关键环节,其检测结果,决定着 电压电缆的合格性。但是,在试验时,极易发生假击穿现象。因此,对有关电缆电 压试验中的“假击穿"现象探讨有其重要的现实意义。
一、“假击穿"现象发生机理
击穿机理从微观角度来分析:在低电压时,如 1000V 时,电流过大甚至在击穿 碳化以后就会变成导体,尤其是在绝缘工具的高压耐压实验,持续增加电压到它耐 受电压的 1.5 到 2 倍,在这个过程中如果听到啪的一声放电的声音,就是被高压击 穿,断电以后你会看到被测物上有一个或几个针眼大的圆眼儿,这就是击穿的真接 表现。另外,高电压致使绝缘体的原子重新排列,绝缘材料的原子是由原子核和电 子组成且保持一定的稳定性,外加电压达到一定值时,会夺取原子外部电子,改变 其电子排布,破坏其稳定性,形成击穿。
在电缆电压试验中,经常会由于“假击穿"现象而造成误判,为此,我们在这 里简单说明一下“假击穿"现象发生机理:
由于电线电缆是有一定的电容的,可以知道,该电容有两个电极,一般而言,造成“假击穿"的现 象的原因主要有以下两种情况:一方面,是由于在通过电流较大时,随外加反向电 压增加,使内部电场过强,破坏共价键而把电子强行拉出,产生大量的电子空穴 对,使少数载流子急剧上升而击穿,从而发生假击穿现象,另一方面,是由于高压 试验时,设备的动作电流较小,强电场使电子高速运动与原子碰撞,产生新的电子 空穴对,连锁反应引起载流子数目剧增而假击穿,因此,在试验时,为了避免对假 击穿的误判,需要调整电流的数值。
二、假击穿故障分析
首先,在高压试验时,可能在电源和电压的作用下,某些部件无法启动,而且 发生了假击穿现象。如 220v 下,在接通电源后,用万用表测得 5v 待机电源电压正 常,开关线和电源线以及电压正常,无法启动,再接上调压变压器,调到 110v, 电源启动,12V,5v,3.3v 电压正常,接上电阻测试,带负载能力也没问题。说明 电源大部分是好的,接着慢慢提高电压,在达到到了 170v 左右,电源自己关闭, 重复多次,发现电源只能运行于 100v-170v,这极有可能是由于电源的问题所造成 的。
其次,在主控的供电正常的情况下,也可以是由于监控故障,保护器发生了故 障,为此,需要测量一下主控装置是否正常,然后换掉光耦,检查芯片及其周边的 电容,同时,测一下主开关管,进而来确定是否为假击穿。
第三,除了要检查串联开关电源以外,还要去掉假负载接高压包开机,可控硅 又击穿,开机瞬间主电压升高到 160 伏,判断是否正常,如果不正常,需要进行检 修。在具体实施时,从以下方面入手:一、接假负载开机监测 15 分钟,主电压保持 在 120 伏不变,但接入高压以后,主电压马上升高,可知这不是开关电源的问题,可 以推断是由行输出部分的故障,同样,也包括行输出变压器;二、查行变各脚是否 脱焊,行管各极电压是否正常,逆程电容有无击穿或变值,视放电路聚焦和控制电 压。
此外,对电源管击穿现象进行检查,换后接假负载,然后调整电压输出的电位 器,检查主电源电压是否有变化,若是有变化,查驱动总分,若是没有变化,查稳 压部分,同时,检修电源时,最好接一个调压器,换开关管后,用调压器把电压调 到 100V 左右,将电压渐渐渐地调高,看电源是否能够正常工作,换掉电源,进行 确定假击穿现象。
三、电线电缆试验
1.电容估算与确定
在电线电缆试验时,整个模块的电容估算与确定是一个非常重要的问题。一般 通过万用表测试,并且要根据电路图进行精确的计算,但是一定要在保证知道内部 电路的前提下,去估算,以保证估算的正确性。在电缆线路中,电容电流估算主要 通过以下公式来完成:
IC=0.1UeL 其中,Ue 是相电压(KV) L 是长度(公里)
电机的启动电容容量大小,有经验公式可供估算。在这里所指的经验数据我们 通过举例说明:电机不超过 200W,启动电容不会超过 100uF,如果运转电容,可以选 择若干个数值通电试验,以确定哪个电容的容量下整机电流最小,则该电容的容量 就是最佳数值。当然还要结合电容容量的经验计算公式来进行验证,从而保证其结 果的可靠性。
电容器的容量可以通过 C=35000I/2PUfcos&算出,如:
I=250W/220V=1.2AC=35000x1.2/2x1x50x220X0.8=24uf,所以,可以选择 350V30uf 的电容,而工作电容 C1=1950×IN/U1/COSφ,在起动电容时,一般为工作电容的 1-4 倍,可根据起动时负载大小来选。一般 1kW 以下不加起动电容,直接加工作电 容就可以。
另外,在实际应用中,由于电缆的型号不同,再加上电缆之间并不是一条线相 连,而是有分支的树状连接起来,为此,在计算电容电流时,需要对整个线路的结 构图进行分可析,从而确定计算结果。但是好使这样,电容的计算结果准确性也不 够,只是属于估算,要想确切掌握电容的大小,实测是好的方法;在计算时一定 要将系统内所有电缆的长度加起来,两根或多根并列运行的电缆,要按两根或多根 统计,通过正确估算电容,正确判断假击穿现象。
2.动作电流选择与控制
动作电流的选择与控制是电线电缆试验的一个关键环节。试验设备限定动作电流是 可调的,有 100mA、300mA、500mA,对应的不动作电流,其对应不同的电阻值。假 如设备的额定工作电流为 75A,试验设备限定动作的动作电流应该如何选择,具体 可以从以下方面入手:
首先,由于电线电缆允许的载流量是电线电缆在特定环境温度(25 摄氏 度)、没有穿管、温度没有升高的条件下的允许载流量。例如 16 平方毫米的铝 线,它允许的载流量最大可以达到 80A,但是在实践中,一旦当环境温度超过 25 度,那么就要降容使用,乘以系数 0.9,这时候允许的最大载流量只有 80×0.9= 72A,若是发生击穿,那么就要乘以系数 0.8,那么这时就是 80×0.8=64A,如果 温度又提高,又发生击穿,那么就要乘以 0.9×0.8,那么载流量就是 80×0.9× 0.8=57.6A。因此,要考虑实际使用过程中,环境温度及线路铺设的情况,要保证 有足够的余量,避免电线电缆出现过度使用,提前老化,避免假击穿现象。
其次,正好我们所知,变频器输出给点击的电流是设备所带负载的大小确定 的,若输送带负载是恒转矩负载,不论点击的转速多大,其电流基本不变,转速 高,输出功力高,转速低,输出功率低。随着电流加速,相应提高频率和电压,起 动电流被限制在 150%额定电流以下。与此同时,对于启动电流的限定,随电压增 加应该有所下降,若是负载不变,电流设定在 150%额定电流即可,通过这种方法 来控制假击穿现象的发生。
*电压击穿试验仪(ZJC-50E计算机控制)是通过早一起绝缘部分和带电部分之间施加一定时间额定值的交直流高压电流来检测仪器绝缘材料所能承受的耐压值,因为在仪器的日常工作中不仅仅要考虑到仪器的额定工作电压所造成的影响,还要考虑短时间内大大高于热定电压值的过电压影响(比如短路或操作失误等),在过电压的作用下,绝缘材料的结构会发生损坏,当超过绝缘材料所能承受的较大值时就会发生击穿并导致设备运行异常,还会造成操作人员触电危害人身安全。
电压击穿测试原理:1、本仪器由控制部分和高压试验部分组成。北京智德创新检测仪器由计算机或触摸屏控制整个仪器运行。2、在触摸屏或计算机上设置界面设置好升压方式、试验电压值、耐压时间值,升压速度确定后回到主界面,启动运行后,北京智德创新检测仪器器按预先设定的升压方式和升压速度控制步进电机,从而带动调压器升高试验电压,并同步测量试验电压,由计算机或触摸屏显示电压值,并描绘出实时曲线。变压器高压端串联一个保护电阻接到电极系统的上电极,施加到试样上。3、当试验电压达到预设值,保持耐压时间(升压方式为恒定耐压)过后,试样还未击穿,系统自动降压回零跳闸;若在升压过程中试样击穿,过流继电器将迅速切断电路自动降压回零,触摸屏或计算机界面将保持最高击穿试验电压值显示。
电线电缆电压击穿测试仪结构原理:
主要由:升压系统(高压变压器)、测量系统、A/D转换器、放电系统、电极、油箱、电极定位架、计算机数据处理系统、软件等组成;高压变压器主要产生试样所需的直流电压,调压器用于调节升压变压器输入端电压以产生高压所需的输入电压,电压测量主要是从高压变压器测量端测量,高压变压器测量端和高压端是线性的;试验软件是我公司*研发的功能强大、操作简单、显示直观的试验软件系统。采用计算机控制,通过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验。
电线电缆电压击穿测试仪软件功能:
1、试验过程中可动态绘制出试验曲线,试验的曲线可以多种颜色叠加对比,局部放大, 曲线上任意一 段可进行区域放大分析;
2、可对试验数据进行编辑修改,灵活适用;
3、试验条件及测试结果等数据可自动存储;
4、试验报告格式灵活可变,适用于不同用户的不同需求;
5、可对一组试验中曲线数据的有效与否进行人为选定;
6、试验结果数据可导入 EXECL,WORD 文档编辑;
7、软件设备人员管理功能,试验人员可设置自己的试验项目和试验参数,设置自己的试验内容后别人无法进入程序;
8、过电流保护装置有足够的灵敏度,能够保证试样击穿时在 0.1S 内切断电源;
9、仪器运行的持久性: 仪器可连续运行使用,不需为保护仪器而定期停机。
试验软件是我公司新研发的功能强大、操作简单、显示直观的试验软件系统。
本仪器采用计算机控制,过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验。
主要技术指标:
输入电压:AC 220V±10%
电源频率:50-60Hz
高压变压器功率:3kVA
输出电压:交流 0~50kV, 直流 0~50kV
漏电流选择:1-30MA可随意设置
测量精度:±2%
测量范围:1kV~50kV
升压方式选择功能:1;连续升压;2;逐级升压;3;瞬时升压。
升压速率设定功能:0.100 kV/s ~ 5.000kV/s可随意设置(ZJC-50kV)
相关产品:
ZJC-20E电压击穿/介电强度试验仪GB/T1408.1-2016;IEC60243-1:2013
ZJC-50E电压击穿/介电强度试验仪GB/T1408.2-2016;IEC60243-2:2013
ZJC-100E电压击穿/介电强度试验仪ASTM D149
ZJC-150E电压击穿/介电强度试验仪GB/T1695-2005
ZST-121体积表面电阻测试仪GB/T 31838.2-2019; IEC 62631-3-1:2016;GB/T1410
ZST-122体积表面电阻测试仪 GB/T 31838.3-2019; IEC 62631-3-2:2015;GB/T1410
ZST-212全自动体积表面电阻率测试仪 GB/T 31838.4-2019; IEC 62631-3-3:2015
ZJD-A介电常数介质损耗测定仪GB/T1693-2007;GB/T1409-2006
ZJD-B介电常数介质损耗测定仪ASTM D150-11;GB/T1693-2007
ZJD-C介电常数介质损耗测定仪GB/T1409-2006;ASTM D150-11
QS37a介电常数介质损耗测定仪GB/T1409-2006;IEC60250
ZJD-87介电常数介质损耗测定仪GB/T1409-2006;IEC60250
ZDH-20kV耐电弧试验机GB-T 1411-2002;IEC61621-1997
LDQ-5全自动漏电起痕试验仪 GB/T4207-2012;IEC60112-2009
ZLD-6kV高压漏电起痕试验仪GB/T 6553-2014;IEC 60587-2007;ASTMD 2303-2013
CR-400A毛细管流变仪 GB/T25278-2010
TR-200A转矩流变仪
M-200A橡塑摩擦磨损试验机GB/T3960-2016
XRW-300HB热变形维卡温度测定仪GB/T1633、GB/T1634、GB/T8802、ASTM D1525、ASTM D648
XNR-400H熔体流动速率测定仪GBT 3682.1-2018 ;ASTM D1238-2013;
CZF-5水平垂直燃烧试验仪GB-T2408-2008;(ANSI/UL94 -2006);GBT10707-2008
JF-5氧指数测定仪GB/T 2406.2-2009
ZRS-2灼热丝试验仪GB/T5169.10-2006;GB5169.11;GB4706.1
ZY-2针焰试验仪GB/T4706.1-2005;GB5169.5
过往用户名单:排名不分前后
航天科工防御技术研究试验中心 | 四川大学材料学院 |
中航飞机贵州有限责任公司 | 成都电子科技大学 |
中国航天科技集团烽火机械厂 | 中国计量大学 |
中航沈飞股份有限公司 | 南京工业大学 |
公牛集团股份有限公司 | 天津汽车技术研究中心 |
清华大学 | 广东时利和汽车实业集团有限公司 |
华北电力大学 | 唐山中车绝缘漆厂 |
景德镇陶瓷大学 | 北车唐山机车车辆有限公司 |
中国建材检验认证集团有限公司 | 中材科技股份有限公司 |
苏州赛伍应用技术股份有限公司 | 上海乐来汽车分析测试有限公司 |
浙江赛伍应用技术有限公司 | 深圳天祥质量技术服务有限公司广州分公司 |
苏州中来光伏新材股份有限公司 | 浙江国检检测技术股份有限公司 |
SK化学 | 山东省科学院新材料研究所 |
乐凯胶片股份有限公司 | 贵州省建材产品质量监督检检验院 |
南京聚隆科技股份有限公司 | 广州合成材料研究院有限公司 |
华为技术有限公司 | 温州市鹿城区科学技术局 |
合肥杰事杰新材料股份有限公司 | 山东黄河三角洲京博化工研究院有限公司 |
吉林江机特种工业有限公司 | 山东泰开高压开关有限公司 |
河北省应急管理厅 | 中国石油集团石油管工程技术研究院 |
许继变压器有限公司 | 中国石化大连石油化工研究院 |
江苏省特种设备安全监督检验研究院 | 中石化宁波新材料研究院有限公司 |
北京雷电防护装置测试中心 | 青岛海洋化工研究院 |
中国制浆造纸研究院 | 温州市鹿城区科学技术局 |
湖南把兄弟新材料股份有限公司 | 南京玻璃纤维研究院有限公司 |
宁夏宁煤集团 | 大连电瓷集团输变电材料有限公司 |
中石伟业科技股份无锡有限公司 | 天津泽西矿产加工有限公司 |
康龙化成(北京)新药技术有限公司 | 江苏佐敦涂料(张家港)有限公司 |
方圆汽车零部件有限公司 | 上海安彼太新材料有限公司 |
广东计量测试技术服务中心 | 惠州市三岛新材料有限公司 |
中国一汽股份有限公司 | 苏州霓佳斯工业制品有限公司 |
广东四方威凯新材料有限公司 | 广州特种承压设备检测研究院 |
洛阳中超新材料股份有限公司 | 阿科玛(常熟)氟化工有限公司 |
江苏华辰变压器股份有限公司 | 河南平煤神马聚碳材料有限责任公司 |
杭州科百特过滤器材有限公司 | 杭州意能电力技术有限公司 |
江苏宏景电气有限公司 | 国网天津电力公司 |
沃奇汽车技术(苏州)有限公司 | 南京东爵有机硅南京有限公司 |
常州强力电子新材料股份有限公司 | 杭州巨骐信息科技股份有限公司 |
潍坊三力本诺化学工业有限公司 | 江苏嘉盟电力设备有限公司 |
帕卡机电配件(佛山)有限公司 | 北京明士新材料开发有限公司 |
特变电工股份有限公司 | 山东高亚绝缘子有限公司 |
产品咨询